Как научить ребенка делению во 2 классе?
Содержание:
- 4 Объясняем ребенку деление столбиком
- Деление двузначного числа на однозначное
- Как учить ребенка учиться
- Как делить столбиком
- Деление столбиком
- Деление многозначных чисел
- Правило встречается в следующих упражнениях:
- Да какая разница?
- Основные операции в математике
- Описание
- Что важнее – умножение или сложение?
- Задачи на нахождение неизвестного слагаемого
4 Объясняем ребенку деление столбиком
Переходите к этому обучению только после того, как ребенок усвоил вышеуказанные способы. Также он должен знать, как умножаются в столбик числа. Берем простой пример: 110 делим на 5. Процесс объяснения:
- напишите на чистом листке бумаги эти числа;
- разделите их перпендикулярными линиями так, как будете делить в столбик;
- объясните, какое число является делителем, а какое – делимым;
- определите с ребенком, какое число может сначала использоваться для деления. Первая цифра – 1 на 5 не поделится. Значит, надо взять следующую цифру к ней и получится число 11. Цифра 5 может поместиться в 11 два раза;
- запишите цифру 2 в столбике под пятеркой. Попросите, чтобы ребенок умножил 5 на 2. Получится 10. Записываете эту цифру под числом 11;
- вычитаете с ребенком из 11 число 10. Получится 1. Пишете возле единицы оставшийся нолик в столбике. Получается 10;
- разделите с ребенком 10 на 5. Получится 2. Это число записываете под пятеркой, и конечный итог получается 22.
Начинайте обучение с двухзначных или даже однозначных цифр, которые можно делить без остатка. Постепенно усложняйте задачу.
Для легкого усвоения ребенком математики пробуждайте у него интерес к этому уроку. Сейчас появились таблицы деления. Но нужно ли ее запоминать ребенку, если он знает таблицу умножения и поймет, что деление – это процесс наоборот? Все зависит не только от школьного учителя, но и от ваших занятий со школьником.
Деление двузначного числа на однозначное
Ребята, вы меня узнали? Люблю наряжаться на маскарад. Вот прицепил такие усы, думал, что буду похож на фокусника. Чудеса начинаются.
Такие задания называют примерами с «усиками». Да, да, но усики носят не люди, кто делит, а сами примеры. Рисовать их нужно простым карандашом, а когда научитесь быстро считать, то просто представляйте в голове.
Устное деление двузначного на однозначное
Задание 1.
Пусть надо решить, сколько будет
К «усикам» запишем такие два слагаемых, которые делятся на 8, а в сумме дают 96.
Самое главное — это не ошибиться в подборе первого «усика». Надо запомнить, что он всегда больше, чем второй. Ищем его, умножая 8 на 10. Если не подойдет, то будем умножать на 20, на 30. Главное, чтобы было круглое число.
Все понятно? Будем тренироваться.
Задание 2.
Задание 3.
Попробуем разделить 90 на два. «Первый усик» явно не 20, тогда второй будет 70. Знаем, что «второй усик» не может быть больше первого.
Вижу, что не 60, потому что 30 разделить на два — это не табличный случай.
Следовательно, 2 ∙ 40 = 80. Значит «первый усик» предположительно 80. «Второй усик» тогда найдем вычитанием: 90 – 80 = 10. Десять разделить на два, это таблица.
Как думаете, вы справитесь с делением? Когда встречаете случаи, где двузначное число делится на однозначное, и примеры не относятся к таблице умножения, то решайте подбором «усиков». Разбивайте делимое на подходящие слагаемые. Их можно записать суммой в скобочках, а при делении использовать правило деления суммы на число.
Решите задачу.
Таня выполнила 96 примеров, а Коля в 4 раза меньше. Сколько примеров решил Коля?
Чтобы ответить на вопрос задачи, надо выполнить действие деления.
96 : 4 =
«Усиками» будут 80 и 16, получается сумма 80 + 16. Значит, каждое из этих слагаемых разделите на 4, а частные сложите.
Ответ: 24
Этап пройден. Вот вам синяя лента в награду.
Деление столбиком двузначное на однозначное
Письменное деление уголком просто невозможно усвоить без блестящего знания таблицы умножения. Это просто трата времени и нервов. В древности в римских школах ее заучивали хором на распев. Знаете ответы на «отлично», тогда переходите на примеры деления в столбик.
Задание 1.
Пусть надо 84 разделить на три. Посмотрите на запись. Такой значок означает деление уголком. Уголок имеет наверху делитель, на который делим. Под чертой — результат, который ищем. Он называется частным.
Нам надо узнать, чему равно частное. Но прежде определим, сколько цифр будет в результате. Это очень важный шаг, поэтому упускать его нельзя. Как мы будем это делать? Посмотрите на первую цифру. Это восьмерка. Восемь больше трех. Значит, она может дать нам полноценную цифру в частном. Ставим точку. После восьмерки еще одна цифра, это значит, что частное — двузначное число. Под чертой в уголке карандашом поставьте вторую точку.
Первое неполное делимое — восьмерка. Начинаем ее делить на три, ищем табличный случай. Легче всего уменьшать 8 на единицу.
8 – 1 = 7. В таблице нет деления семи на три.
Уменьшаем еще на 1.
7 – 1 = 6. Шесть делится на три, получается — по два. Записываем 2 в частное под чертой.
Теперь мы должны понять, сколько не разделили. Ведь разделили всего шесть.
А надо было разделить восемь.
Два осталось неразделенным. Это остаток. Он должен быть меньше делителя.
Давайте проверим: два меньше трех.
Да, действительно. Мы сделали все правильно. Этот шаг очень важен. Не забывайте сравнивать остаток с делителем.
После этого сносим следующую цифру с тем, чтобы получить новое неполное делимое
Обратите внимание: нужно писать каждую цифру в своей клетке. Получается неполное делимое 24
Ответ: 28.
Задание 2.
Решите пример столбиком 96 : 4 =
Проверьте:
Ребята, вы молодцы. Ловите последнюю награду — фиолетовую шелковую полоску.
Ура! Наш математический маршрут пройден. Знания-сокровища из цветных лент превратились в волшебную радугу. Что же у нас вышло, что мы унесем в нашем сундуке. Закончите предложения:
Как учить ребенка учиться
Умеет ли ваш ребенок учиться? Уверена, что многих родителей этот вопрос поставил в тупик. А действительно, что значит «уметь учиться»? Когда ваш юный школьник только пошел в школу, после занятий, возможно, он бежал домой и очень хотел сразу же делать уроки. Так бывает, когда дети очень ждут поступления в 1 класс. Но со временем интересы к своевременному выполнению домашнего задания ослабевают и «домашка» становится скучным времяпровождением.
А ведь именно нежелание выполнять домашние задания, готовиться к школьным рефератам, семинарам и викторинам, становится основной причиной того, что ребенок вначале не хочет, а после и не умеет учиться. Пробелы в знаниях могут накапливаться словно снежный ком, снижая успеваемость школьника и убивая в нем желание учиться.
Чтобы школьник учился этой сложной и ответственной науке – учиться – родители должны всячески помогать ему: составить распорядок дня, учить ребенка выполнять домашнее задание наперед, прорешивать или прописывать дополнительные упражнения, чтобы тренировать и руку для письма, и мозг для устного счета. Математике дается детям начального звена сложнее всего, именно поэтому мы и подготовили для школьников 3 класса этот материал.
Как делить столбиком
Допустим, нам нужно разделить 780 на 12, записываем действие в столбик и приступаем к делению:
Деление столбиком выполняется поэтапно. Первое, что нам требуется сделать, это определить неполное делимое. Смотрим на первую цифру делимого:
это число 7, так как оно меньше делителя, то мы не можем начать деление с него, значит нужно взять ещё одну цифру из делимого, число 78 больше делителя, поэтому мы начинаем деление с него:
В нашем случае число 78 будет неполным делимым, неполным оно называется потому, что является всего лишь частью делимого.
Определив неполное делимое, мы можем узнать сколько цифр будет в частном, для этого нам нужно посчитать, сколько цифр осталось в делимом после неполного делимого, в нашем случае всего одна цифра — 0, это значит, что частное будет состоять из 2 цифр.
Узнав количество цифр, которое должно получиться в частном, на его месте можно поставить точки. Если при завершении деления количество цифр получилось больше или меньше, чем указано точек, значит где-то была допущена ошибка:
Приступаем к делению. Нам нужно определить сколько раз 12 содержится в числе 78. Для этого мы последовательно умножаем делитель на натуральные числа 1, 2, 3, …, пока не получится число максимально близкое к неполному делимому или равное ему, но не превышающее его. Таким образом мы получаем число 6, записываем его под делитель, а из 78 (по правилам вычитания столбиком) вычитаем 72 (12 · 6 = 72). После того, как мы вычли 72 из 78, получился остаток 6:
Обратите внимание, что остаток от деления показывает нам, правильно ли мы подобрали число. Если остаток равен делителю или больше него, то мы не правильно подобрали число и нам нужно взять число побольше
К получившемуся остатку — 6, сносим следующую цифру делимого — 0. В результате, получилось неполное делимое — 60. Определяем, сколько раз 12 содержится в числе 60. Получаем число 5, записываем его в частное после цифры 6, а из 60 вычитаем 60 (12 · 5 = 60). В остатке получился нуль:
Так как в делимом больше не осталось цифр, значит 780 разделилось на 12 нацело. В результате выполнения деления столбиком мы нашли частное — оно записано под делителем:
780 : 12 = 65.
Рассмотрим пример, когда в частном получаются нули. Допустим нам нужно разделить 9027 на 9.
Определяем неполное делимое — это число 9. Записываем в частное 1 и из 9 вычитаем 9. В остатке получился нуль. Обычно, если в промежуточных вычислениях в остатке получается нуль, его не записывают:
Сносим следующую цифру делимого — 0. Вспоминаем, что при делении нуля на любое число будет нуль. Записываем в частное нуль (0 : 9 = 0) и в промежуточных вычислениях из 0 вычитаем 0. Обычно, чтобы не нагромождать промежуточные вычисления, вычисление с нулём не записывают:
Сносим следующую цифру делимого — 2. В промежуточных вычислениях вышло так, что неполное делимое (2) меньше, чем делитель (9). В этом случае в частное записывают нуль и сносят следующую цифру делимого:
Определяем, сколько раз 9 содержится в числе 27. Получаем число 3, записываем его в частное, а из 27 вычитаем 27. В остатке получился нуль:
Так как в делимом больше не осталось цифр, значит число 9027 разделилось на 9 нацело:
9027 : 9 = 1003.
Рассмотрим пример, когда делимое оканчивается нулями. Пусть нам требуется разделить 3000 на 6.
Определяем неполное делимое — это число 30. Записываем в частное 5 и из 30 вычитаем 30. В остатке получился нуль. Как уже было сказано, нуль в остатке в промежуточных вычислениях записывать не обязательно:
Сносим следующую цифру делимого — 0. Так как при делении нуля на любое число будет нуль, записываем в частное нуль и в промежуточных вычислениях из 0 вычитаем 0:
Сносим следующую цифру делимого — 0. Записываем в частное ещё один нуль и в промежуточных вычислениях из 0 вычитаем 0. Так как в промежуточных вычислениях, вычисление с нулём обычно не записывают, то запись можно сократить, оставив только остаток — 0. Нуль в остатке в самом конце вычислений обычно записывают для того, чтобы показать, что деление выполнено нацело:
Так как в делимом больше не осталось цифр, значит 3000 разделилось на 6 нацело:
3000 : 6 = 500.
Деление столбиком
Лишь после того, как ученик освоил и хорошо запомнил предыдущие способы, можно переходить к делению столбиком, с остатком или без него.
Вначале необходимо, чтобы ребенок понял и заучил название компонентов процесса деления:
- делимое – то число, которое делят;
- делитель – то, на что делят;
- частное – конечный результат.
Далее нужно показать форму записи при делении столбиком. К примеру, нужно поделить двузначное число на однозначное:
- вначале пишется делимое – пусть это будет 98;
- справа от него рисуют уголок, как перевернутую букву «Т», в нем записывают делитель – в нашем случае 7;
- теперь определяют наименьшее число в делимом, которое делится на 7 – это 9;
- цифра 7 в числе 9 может поместиться 1 раз – значит, в частном пишем 1;
- теперь нужно умножить делитель 7 на первую цифру частного 1 – получится 7. Его надо записать под 9;
- из 9 вычесть 7 – получится 2.
Обратите внимание: полученная разность никогда не сможет быть равна или больше делителя. Если это произошло, значит, было неверно определено количество 7 в 9
- так как 2 на 7 не делится, сносят вниз следующую цифру из двузначного делимого – 8. Получили 28. Его можно поделить на 7 – получится 4;
- эту цифру нужно записать рядом с 1 – получится 14. Это и будет частным в данном примере;
- но правильно оформить решение все-таки нужно, поэтому 7 умножают на 4 – получают результат 28, который и пишут под 28. Вычитают 28 из 28 – получают 0. Его пишут под чертой, которой подводят итог решения.
- в случае если остаток не равен нулю, то это – деление с остатком.
В первый класс идет не только малыш – родители вместе с ним начинают и заканчивают школу. Учитель не всегда имеет возможность объяснить каждому ученику ту или иную тему. И вот тогда родители должны научить свое чадо, что такое умножение, деление с остатком двузначного числа на однозначное. При переходе в третий класс задание усложнится – научить нужно будет делению с остатком и трехзначного числа на двузначное. Главное, набраться терпения и не ругать ребенка из-за малейшей оплошности. Тогда все получится, и математика, возможно, станет любимым школьным предметом.
Деление многозначных чисел
Деление столбиком может показаться детям сложным, однако запомнить алгоритм несложно. Рассмотрим деление многозначных чисел на однозначное число:
215 : 5 = ?
Записывается вычисление следующим образом:
Под делителем будем записывать результат. Деление выполняется следующим образом: сравниваем крайнюю левую цифру делимого с делителем: 2 меньше 5, разделить 2 на 5 мы не можем, поэтому берем еще одну цифру: 21 больше 5, при делении получается: 20 : 5 = 4 (остаток 1)
Сносим к полученному остатку следующую цифру: получаем 15. 15 больше 5, делим: 15 : 5 = 3
Решение будет выглядеть таким образом:
Так производится деление без остатка. По тому же алгоритму производится деление в столбик с остатком с той лишь разницей, что в последней записи будет указан не ноль, а остаток.
Если необходимо произвести деление трехзначных чисел в столбик на двухзначное, порядок действий будет таким же, как при делении на однозначное число.
Приведем примеры на деление:
Аналогично проводится вычисление при делении многозначного числа на двузначное с остатком: 853 : 15 = 50 и ( 3 ) остатокОбратите внимание на эту запись: если при промежуточных вычислениях в результате получается 0, но пример не решен до конца, ноль не записывается, а сразу сносится следующая цифра, и вычисление производится дальше. Поможет усвоить правила деления многозначных чисел в столбик видеоурок
Запомнив алгоритм и проследив последовательность записи вычислений, примеры на умножение и деление в столбик в 4 классе уже не будут казаться такими сложными
Поможет усвоить правила деления многозначных чисел в столбик видеоурок. Запомнив алгоритм и проследив последовательность записи вычислений, примеры на умножение и деление в столбик в 4 классе уже не будут казаться такими сложными.
Важно! Следите за записью: разряды должны записываться под разрядами, в столбик. Видео «Деление в столбик»
Видео «Деление в столбик»
Если во 2 классе ребенок выучил таблицу умножения, примеры на умножение и деление двузначного или трехзначного числа на уроках математики за 4 класс не вызовет у него трудностей.
Читайте так же:
Правило встречается в следующих упражнениях:
2 класс
Страница 57. Вариант 2. № 3,
Моро, Волкова, Проверочные работы
Страница 66. Вариант 1. Тест 2,
Моро, Волкова, Проверочные работы
Страница 73,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 74,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 82,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 83,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 85,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 88,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 94,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 103,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
3 класс
Страница 45,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1
Страница 54,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1
Страница 110,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1
Страница 59,
Моро, Волкова, Рабочая тетрадь, часть 1
Страница 72,
Моро, Волкова, Рабочая тетрадь, часть 1
Страница 78,
Моро, Волкова, Рабочая тетрадь, часть 1
Страница 13. Вариант 2. Тест,
Моро, Волкова, Проверочные работы
Страница 18. Вариант 1. № 4,
Моро, Волкова, Проверочные работы
Страница 55. Вариант 2. Тест 2,
Моро, Волкова, Проверочные работы
Страница 78,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
4 класс
Страница 5,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1
Страница 10,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1
Страница 93,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1
Страница 20,
Моро, Волкова, Рабочая тетрадь, часть 1
Страница 79,
Моро, Волкова, Рабочая тетрадь, часть 1
Страница 50. Вариант 1. Тест 1,
Моро, Волкова, Проверочные работы
Страница 55,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 77,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 102,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 47,
Моро, Волкова, Рабочая тетрадь, часть 2
5 класс
Задание 441,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Задание 673,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Задание 818,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Номер 36,
Мерзляк, Полонский, Якир, Учебник
Номер 1,
Мерзляк, Полонский, Якир, Учебник
Номер 520,
Мерзляк, Полонский, Якир, Учебник
Номер 656,
Мерзляк, Полонский, Якир, Учебник
Номер 657,
Мерзляк, Полонский, Якир, Учебник
Номер 673,
Мерзляк, Полонский, Якир, Учебник
Номер 1050,
Мерзляк, Полонский, Якир, Учебник
6 класс
Задание 1211,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Задание 1222,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Задание 1262,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Задание 1266,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Задание 1473,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Да какая разница?
Действительно, настолько ли это важно – какое действие в примере выполнить первым, какое вторым?
Рассмотрим примеры:
10 – 5 + 2 = ?
Если мы будем выполнять действия по порядку, получим:
- 10 – 5 = 5;
- 5 + 2 = 7.
Попробуем иначе:
- 5 + 2 = 7;
- 10 – 7 = 3.
Получили два разных ответа. Но так быть не должно, следовательно, порядок выполнения действий имеет значение. Тем более, если в выражении имеются скобки:
25 – (18+2) = ?
Пробуем решить двумя способами:
- 25 – 18 + 2 = 9;
- 25 – 20 = 5.
Ответы разные, а для того чтобы определить порядок действий, в выражении стоят скобки – они показывают, какое действие нужно выполнить первым. Значит, правильным будет такое решение:
- 18 + 2 = 20;
- 25 – 20 = 5.
Другого решения у ответа у примера быть не должно.
Итак:
Правило первое: Математические действия в выражении выполняются по порядку, начиная с левого, направо.
Правило второе: Если в выражении есть скобки, действие в скобках выполняется в первую очередь, а затем следуют действия по порядку, слева направо.
Основные операции в математике
Основные операции, которые используют в математике — это сложение, вычитание, умножение и деление. Помимо этих операций есть ещё операции отношения, такие как равно (=), больше (>), меньше (<), больше или равно (≥), меньше или равно (≤), не равно (≠).
Операции действия:
- сложение (+)
- вычитание (-)
- умножение (*)
- деление (:)
Операции отношения:
- равно (=)
- больше (>)
- меньше (<)
- больше или равно (≥)
- меньше или равно (≤)
- не равно (≠)
Сложение — операция, которая позволяет объединить два слагаемых.
Запись сложения: 5 + 1 = 6, где 5 и 1 — слагаемые, 6 — сумма.
Вычитание — действие, обратное сложению.
Запись вычитания: 10 — 1 = 9, где 10 — уменьшаемое, 1 — вычитаемое, 9 — разность.
Если разность 9, сложить с вычитаемым 1, то получится уменьшаемое 10. Операция сложения 9 + 1 = 10 является контрольной проверкой вычитания 10 — 1 = 9.
Умножение — арифметическое действие в виде краткой записи суммы одинаковых слагаемых.
- Запись: 3 * 4 = 12, где 3 — множимое, 4 — множитель, 12 — произведение.
- 3 * 4 = 3 + 3 + 3 + 3
В случае, если множимое и множитель поменять ролями, произведение остается одним и тем же. Например: 5 * 2 = 5 + 5 = 10.
Поэтому и множитель, и множимое называют сомножителями.
Деление — арифметическое действие обратное умножению.
Запись: 30 : 6 = 5 или 30/6 = 5, где 30 — делимое, 6 — делитель, 5 — частное.
В этом случае произведение делителя 6 и частного 5, в качестве проверки, дает делимое 30.
Если в результате операции деления, частное является не целым числом, то его можно представить в виде дроби.
Возведение степень — операция умножения числа на самого себя несколько раз.
Основание степени — число, которое повторяется сомножителем определённое количество раз.
Показатель степени — число, которое указывает, сколько раз берется одинаковый множитель.
Степенью называется число, которое получается в результате взаимодействия основания и показателя степени.
- Запись: 34 = 81, где 3 — основание степени, 4 — показатель степени, 81 — степень.
- 3^4 = 3 * 3 * 3 * 3
Вторая степень называется квадратом, третья степень — кубом. Первой степенью числа называют само это число.
Извлечение корня — арифметическое действие, обратное возведению в степень.
- Запись: 4√81 = 3, где 81 — подкоренное число, 4 — показатель корня, 3 — корень.
- З^4 = 81 — возведение числа 3 в четвертую степень дает 81 (проверка извлечения корня).
- 2√16 = 4 — корень второй степени называется — квадратным.
При знаке квадратного корня показатель корня принято опускать: √16 = 4.
3√8 = 2 — корень третьей степени называется — кубическим.
Сложение и вычитание, умножение и деление, возведение в степень и извлечение корня попарно представляют обратные друг другу действия. Далее узнаем порядок выполнения арифметических действий.
Описание
Таблица умножения (примеры на умножение и деление) — это одна из важных составляющих в изучении математики, которая является базой для последующего решения различных заданий. Именно поэтому нужна практика, которая поможет развить внимательность и закрепить навыки устного счета примеров на таблицу умножения учеников начальных классов
На данном этапе также важно довести навык выполнения арифметических действий с числами до автоматизма
Программа представляет собой тренажер для счета. С помощью генератора примеров можно создать и распечатать готовые примеры на умножение и деление вразброс для детей 1-2 класса. Причем, в зависимости от потребности, можно сформировать карточки только на умножение, деление или смешанные примеры.
Программа написана в Excel с помощью макросов. Формируется примеры: 6 столбиков по 40 примеров на листе формата А4. Примеры генерируются случайным образом, количество генераций не ограничено.
Генератор примеров по математике будет очень удобен как для родителей, так и для учителей. Не нужно заранее покупать задачники и пособия по математике с примерами. Можно скачать файл и сгенерировать карточки в любое время независимо от подключения к интернету и распечатать.
Для ознакомления с программой можно бесплатно скачать примеры, которые получаются при использовании программы. Для получения новой карточки примеров достаточно скачать, нажать на кнопку генерации и распечатать. Чтобы выучить таблицу умножения, можно скачать карточку с примерами для заучивания и проверки своих знаний.
Другие программы, которые помогут закрепить навыки счета:
-
- Таблица умножения — карточки
- Таблица умножения для изучения (умножение и деление на каждое число и вразброс)
- Игра «Крестики-нолики» на таблицу умножения
- Игра «Найди примеры» на таблицу умножения
- Таблица умножения для изучения (с автопроверкой)
- Таблица умножения (примеры на умножение)
- Математический лабиринт (таблица умножения)
- Умножение и деление по типам (табличное, внетабличное, круглых чисел)
- Головоломка «Квадрат множителей»
Также есть программы, в которых можно выбрать уровень сложности. В них можно начать с решения легких примеров, а затем перейти к более сложным.
На сайте представлен каталог программ, в котором все программы распределены по группам с указанием различий в программах внутри каждой группы. С помощью каталога Вы можете выбрать те программы, которые подходят именно Вам.
Что важнее – умножение или сложение?
При решении примеров Расставь порядок действий. Умножить или разделить – на первом месте.
Для выражений, в которых присутствуют не сложение либо вычитание, а умножение или деление, действует то же правило: все действия с числами выполняются по порядку, начиная с левого:
81 : 9 х 2 = ?
- 81 : 9 = 9;
- 9 х 2 = 18.
Сложнее случай – когда в одной задаче встречаются умножение или деление со сложением или вычитанием. Каков порядок вычислений тогда?
Рассмотрим пример:
8 : 2 + 2 = ?
Если выполнять все действия по порядку, сначала деление, затем сложение. В итоге получим:
- 8 : 2 = 4;
- 4 + 2 = 6.
Правило третье: Если в задаче необходимо произвести умножение или деление, они выполняются в первую очередь.
Значит, пример решен правильно. А если в нем будут скобки?
8 : (2 + 2) = ?
- 2 + 2 = 4;
- 8 : 4 = 2.
То, что заключено в скобки, всегда в приоритете. Для того они и стоят в выражении. Поэтому порядок вычислений в подобных выражениях будет следующим:
- Раскрываем скобки. Если их несколько, делаем вычисления для каждых.
- Умножение либо деление.
- Вычисляем конечный результат, выполняя действия слева направо.
Пример:
81 : 9 + (6 – 2) + 3 = ?
- 6 – 2 = 4;
- 81 : 9 = 9;
- 9 + 4 = 13;
- 13 + 3 = 16.
81 : 9 + (6 – 2) + 3 = 16.
А что будет приоритетным: умножение — или деление, вычитание — или сложение, если оба действия встречаются в задаче? Ничего, они равны, в таком случае действует первое правило – действия производятся одно за другим, начиная слева.
Алгоритм решения выражения:
- Анализируем задачу – есть ли скобки, какие математические действия нужно будет выполнить.
- Выполняем вычисления в скобках.
- Делаем умножение и деление.
- Выполняем сложение и вычитание.
Пример:
28 : (11 – 4) + 18 – (25 – 8) = ?
Порядок вычисления:
- 11 – 4 = 7;
- 25 – 8 = 17;
- 28 : 7 = 4;
- 4 + 18 = 22;
- 22 – 17 = 5.
Ответ: 28 : (11 – 4) + 18 – (25 – 8) = 5.
Важно! Если в выражении есть буквенные обозначения, порядок действий остается прежним
Задачи на нахождение неизвестного слагаемого
1. Таня купила 5 российских марок и 13 иностранных. Когда она купила ещё несколько марок, их у неё стало 20. Сколько ещё марок купила Таня?2. В депо пришло 4 поезда. Через час пришло ещё 3 поезда. Сколько поездов пришло ещё через час, если их стало 9?3. У Максима было 3 синие ручки и столько же чёрных. После того как он купил ещё несколько ручек, их у него стало 10. Сколько ручек купил Максим?4. На одной полке в магазине стояло 20 пакетов с соком, на другой 15. Денис купил несколько пакетов, и на полках остался 31 пакет. Сколько пакетов купил Денис?5. В посёлке построили 14 одноэтажных и 3 двухэтажных дома. Когда построили ещё несколько домов, в посёлке стало 20 новых домов. Сколько ещё домов построили?6. Алина в гербарий положила 4 кленовых и 5 дубовых листьев. После того как она нашла ещё несколько красивых листьев, в гербарии стало 16 листьев. Сколько ещё листьев нашла Алина?7. У тёти Люси было 7 пакетиков с семенами. Она купила несколько пакетиков с семенами огурцов и 5 пакетиков с семенами помидоров, и у неё стало 15 пакетиков с семенами. Сколько пакетиков с семенами огурцов купила тётя Люся?8. На столе лежало 3 пирожных. После того как мама положила на стол 5 безе и несколько эклеров, на столе стало 11 пирожных. Сколько эклеров положила мама на стол?9. У хомяков было 4 орешка. Им в клетку положили 2 грецких и несколько земляных орешков, и у них стало 15 орешков. Сколько земляных орешков положили в клетку?10. У причала стояло 6 катеров. Утром причалило 3 катера и несколько катеров причалило вечером, и после этого у причала стало 19 катеров. Сколько катеров причалило вечером?
1. Таня купила 5 российских марок и 13 иностранных. Когда она купила ещё
несколько марок, их у неё стало 20. Сколько ещё марок купила Таня?
1) 5 + 13 = 18 (м.) купила Таня.
2) 20 — 18 = 2 (м.) купила еще.
Ответ: 2 марки.
2. В депо пришло 4 поезда. Через час пришло ещё 3 поезда. Сколько поездов пришло
ещё через час, если их стало 9?
1) 4 + 3 = 7 (п.) пришло в депо.
2) 9 — 7 = 2 (п.) пришло еще.
Ответ: 2 поезда.
3. У Максима было 3 синие ручки и столько же чёрных. После того как он купил ещё
несколько ручек, их у него стало 10. Сколько ручек купил Максим?
1) 3 + 3 = 6 (р.) всего.
2) 10 — 6 = 4 (р.) купили еще.
Ответ: 4 ручки.
4. На одной полке в магазине стояло 20 пакетов с соком, на другой 15. Денис
купил несколько пакетов, и на полках остался 31 пакет. Сколько пакетов купил
Денис?
1) 20 + 15 = 35 (п.) стояло.
2) 35 — 31 = 4 (п.) купил Денис.
Ответ: 4 пакета.
5. В посёлке построили 14 одноэтажных и 3 двухэтажных дома. Когда построили ещё
несколько домов, в посёлке стало 20 новых домов. Сколько ещё домов построили?
1) 14 + 3 = 17 (д.) построили.
2) 20 — 17 = 3 (д.) построили еще.
Ответ: 3 дома.
6. Алина в гербарий положила 4 кленовых и 5 дубовых листьев. После того как она
нашла ещё несколько красивых листьев, в гербарии стало 16 листьев. Сколько ещё
листьев нашла Алина?
1) 4 + 5 = 9 (л.) было в гербарии.
2) 16 — 9 = 7 (л.) нашла Алина.
Ответ: 7 листов.
7. У тёти Люси было 7 пакетиков с семенами. Она купила несколько пакетиков с
семенами огурцов и 5 пакетиков с семенами помидоров, и у неё стало 15 пакетиков
с семенами. Сколько пакетиков с семенами огурцов купила тётя Люся?
1) 7 + 5 = 12 (п.) стало без пакетов с огурцами.
2) 15 — 12 = 3 (п.) с огурцами.
Ответ: 3 пакета.
8. На столе лежало 3 пирожных. После того как мама положила на стол 5 безе и
несколько эклеров, на столе стало 11 пирожных. Сколько эклеров положила мама на
стол?
1) 3 + 5 = 8 (п.) без эклеров.
2) 11 — 8 = 3 (п.) эклеров.
Ответ: 3 эклера.
9. У хомяков было 4 орешка. Им в клетку положили 2 грецких и несколько земляных
орешков, и у них стало 15 орешков. Сколько земляных орешков положили в клетку?
1) 4 + 2 = 6 (ор.) без земляных орехов.
2) 16 — 6 = 10 (ор.) земляных.
Ответ: 10 орехов.
10. У причала стояло 6 катеров. Утром причалило 3 катера и несколько катеров
причалило вечером, и после этого у причала стало 19 катеров. Сколько катеров
причалило вечером?
1) 6 + 3 = 9 (к.) было катеров утром.
2) 19 — 9 = 10 (к.) причалило вечером.
Ответ: 10 катеров.