Изменения ээг: нарушения и отклонения

Кого нужно отправлять на психиатрическое освидетельствование?

Это важный вопрос для большинства работодателей, и ответить на него не так просто. Дело в том, что в Приказе № 377 указаны определенные вещества и физические факторы, но не указаны минимальные «вредные» уровни воздействия. Теоретически в эти списки может попасть любой работник, даже офисный сотрудник, который большую часть рабочего дня проводит за компьютером. Вопрос в том, насколько окажутся придирчивы представители контролирующих органов. Как показывает практика, в первую очередь «спрашивают» за водителей, электромонтажников, людей, которые работают на высоте (более 1,5 м над землей), контактируют с вредными химикатами, имеют дело с продуктами питания, медработников, педагогов и воспитателей.

Приказ № 377 о психиатрическом освидетельствовании и Постановление № 695 Правительства РФ от 23 сентября 2002 года — два документа, которые действуют вместе. Основная суть Приказа № 377, как мы уже разобрались — это перечисление профессий и вредных профессиональных факторов, при которых нужны регулярные освидетельствования психиатра. В Постановлении № 695 перечислены основные правила. Об этом документе мы рассказываем в отдельной статье.

Ознакомиться с полным текстом Приказа № 377 вы можете по этой ссылке.

Для того чтобы получить более подробную информацию о психиатрических освидетельствованиях, свяжитесь с нами по телефону: +7 (495) 120-81-30.

Расшифровка электроэнцефалограммы

При расшифровке показателей ЭЭГ врач учитывает множество факторов: возраст пациента, общее состояние здоровья, возможные показания к проведению исследования, наличие сопутствующих заболеваний.

При расшифровке электроэнцефалографии обращается внимание на показатели альфа-ритма, бета-ритма, дельта и тета-ритмов. Какая норма этих показателей у взрослого человека и какова возможная причина отклонения от нормы на электроэнцефалограмме рассмотрим ниже

Показатель альфа-ритма. Для мозга здорового взрослого человека норма показателя определяется в в диапазоне 8–13 Гц, а амплитуда показателя не должна выходить 100 мкВ. К патологии, определяемой при расшифровке энцефалограммы, относятся:

  • амплитуда альфа-ритма менее 25 мкВ и свыше 100 мкв;
  • превышение разницы показателей альфа-ритма между полушариями мозга до 35%;
  • частотный разброс на энцефалограмме;
  • на энцефалограмме фиксируется постоянный альфа-ритм в лобной доле;
  • отклонение показателя волновой синусоидальности;
  • отсутствие альфа-ритма на электроэнцефалограмме.

Если на энцефалограмме зафиксированы эти патологии, врач может диагностировать возможную асимметрию полушарий головного мозга, которая может развиваться вследствие ОНМК, травмы или развития опухоли. Высокая частота альфа-ритма характерна для черепно-мозговой травмы. Полное отсутствие альфа-ритма – важный диагностический признак слабоумия.

В норме бета-ритм определяется на энцефалограмме с амплитудой 3-5 мкВ в лобных долях обоих полушарий мозга. Амплитуда должна быть симметричной. Высокая амплитуда, зафиксированная на энцефалограмме, характерна для сотрясения мозга. Для энцефалита –воспаления вещества головного мозга- характерно появление коротких веретен на энцефалограмме, причем повышение этих показателей напрямую связано с тяжестью воспалительного процесса.

Если электроэнцефалограмма фиксирует повышение амплитуды на постоянной основе дельта- и тета-ритмов свыше 45 мкВ, врач может диагностировать функциональные расстройства деятельности головного мозга – невроз, неврастению, психоастению. Для тяжелых патологий центральной нервной системы характерно увеличение этих показателей во всех мозговых отделах.

Одним из диагностических признаков развития новообразования в мозге является высокая амплитуда дельта-ритма, а завышенные показатели дельта- и тета-ритмов свидетельствуют о нарушении кровообращения мозга.

В зависимости от того, что показывает электроэнцефалограмма, могут быть назначены дополнительные методы исследования и лечение.

Количественная ЭЭГ, когнитивные вызванные потенциалы мозга человека и нейротерапия

  • Теоретические основы количественной ЭЭГ и  нейротерапии

    • Место ЭЭГ в нейронауке и медицине
    • Методы, дополняющие ЭЭГ
    • Нейронная активность
    • Эндофенотипы
    • ЭЭГ в психологии, изучение психики
    • Количественная ЭЭГ
    • Нейротерапия
  • Ритмы ЭЭГ

    • Биоэлектрическая активность мозга
    • Сверхмедленная активность 
    • Медленные волны сна
    • Дельта-ритм
  • Альфа-ритмы

    I. Типы альфа-ритмовII. Нейронные механизмыIII. Изменения в ответ на решение задачIV. Функциональное значениеV. Аномальные альфа-ритмы

  • Бета-ритм

    I. Типы бета-ритмовII. Нейронные механизмыIII. Гамма-активностьIV. Функциональное значениеV. Аномальные бета-ритмы

  • Среднелобный тета-ритм

    I. ХарактеристикиII. Нейронные механизмыIII. Изменения в ответ на решение задачIV. Функциональное значениеV Аномальные тета-ритмы

  • Пароксизмальная активность
    • Спайки
    • эпилепсия
  • эндофенотипы 

    • Продолжительность записи ЭЭГ
    • ЭЭГ ритмы
    • Наследственные особенности ЭЭГ
  • ЭЭГ во время сна
  • Методы
    • Поля Бродмана 
    • Система 10-20
    • Электроды
    • Усилитель
    • Цифровая ЭЭГ
    • Монтаж 
    • Анализ Фурье
    • Картирование
    • Фильтры
    • Биспектры 
    • Когерентность 
    • десинхронизация
    • Волновое (вейвлет) преобразование 
    • Анализ независимых компонент (ICA)
    • Коррекция артефактов пространственной фильтрацией — в артефакты
    • Модель одиночного диполя 
    • Электромагнитная томография низкого разрешения (LORETA)
    • Зависимая от уровня оксигенации крови фМРТ (BOLD fMRI) 
    • Корданс 
    • Нормальные распределения и отклонение от нормы — в Количественная ЭЭГ
    • Базы данных ЭЭГ
  • WinEEG

    Форматы данных ЭЭГ

  • Вызванные потенциалы

    • Сенсорные системы мозгаI. АнатомияII. Обработка зрительной информацииIII. Разложение ВП одной пробы на независимые компонентыIV. Разложение усредненного ВП на отдельные компонентыV. Информационные потоки слуховой информацииVI. Соматосенсорная модальностьVII. Детекция измененийVIII. Типы сенсорных системIX. Диагностическая ценность сенсорных ВП
    • Система вниманияI. ПсихологияII. Анатомия
    • III. Модуляция процессов обработки сенсорной информацииIV НейрофизиологияV. Нейрональные сетиVI. Поздние позитивные компоненты ВП
    • Исполнительные системыI. ПсихологияII. Базальные ганглии как «темный подвал» мозгаIII. Префронтальная кора и исполнительный контрольIV. Операции вовлечения и отвлеченияV. Операции мониторингаVI. Рабочая памятьVII. Дофамин как медиатор исполнительных систем
    • Аффективная системаI. ПсихологияИ. АнатомияIII. ФизиологияIV. Этапы реакций аффективной системыV. Серотонин как основной медиатор аффективной системы
    • Системы памятиI. ПсихологияII. Декларативная памятьIII. Ацетилхолин как основной медиатор системы обеспечениядекларативной памятиIV. ВП-показатели эпизодической памятиV. Система процедурной памятиVI. Основные медиаторы мозговой системы процедурной памяти
    • Методы: нейронные сети и вызванные потенциалыI. Информационные процессы нейронных сетейII. Нейротрансмиттеры и нейромодуляторыIII. Методы анализа вызванных потенциаловIV Вызванные потенциалы в фармакологическихисследованияхV. Поведенческие парадигмы
    • ПрактикаI. ВведениеII. Формирование тестового заданияIII. Программа EdEEGIV. Упражнения
  • Расстройства систем мозга

    • Синдром нарушения внимания с гиперактивностьюI. Клинические симптомыII. Генетические и внешние факторыIII. Структурные и физиологические коррелятыIV. Корреляты когнитивных вызванных потенциалов
    • V Дофаминовая гипотеза СНВГVI. Лечение
    • ШизофренияI. Клинические симптомыII. Генетические и внешние факторыIII. Структурные и физиологические коррелятыIV. Дофаминовая гипотеза шизофренииV. Лечение
    • Аддиктивные расстройстваI. Описание поведенияII. Структурные и физиологические коррелятыIII. Этапы аддиктивного процессаIV. Лечение
    • Обсессивно-компульсивное расстройствоI. Описание поведенияII. Генетические факторы и коморбидностьIII. Структурные и физиологические коррелятыIV. МедиаторыV Лечение
    • ДепрессияI. Клиническая картинаII. Структурные и физиологические коррелятыIII. Нейрональная модельIV. Лечение
    • Болезнь АльцгеймераI. Описание поведенияII. МедиаторыIII. Модель нейронной сетиIV. Структурные и физиологические коррелятыV. Лечение
    • Методы нейротерапииI. ПлацебоII. ЭЭГ-биоуправлениеIII. Глубинная стимуляция мозгаIV Транскраниальная магнитная стимуляцияV Транскраниальная микрополяризация
  • I. Общие принципы анализа ЭЭГ и нейротерапииII. Предметы дальнейших исследований
    • Частота
    • Амплитуда
    • Фаза
    • Волна
    • Спайк-волна
    • Острая волна-медленная волна
    • Острая волна
    • Вспышки 
    • Паттерн 
    • Эпоха 
    • Разряд 
    • Периодические комплексы

Классификация ЭЭГ по Gibbs

По данным Gibbs и др. (1943), нормальная ЭЭГ представлена:

  1. записями, в которых доминируют альфа-волны и имеется небольшое число быстрых и медленных волн,
  2. записями, в которых доминируют низкой амплитуды быстрые колебания, смешивающиеся с низкоамплитудной активностью (ниже 20 мкВ) различной частоты.

Пользуясь этими критериями, Gibbs и др. записали нормальную ЭЭГ у 85–90 % обследованных здоровых взрослых людей. Greenstein и др. (1948) считают, что при оценке «нормальности» ЭЭГ существенное значение имеет и так называемый дельта-индекс. Он не должен превышать 8 в лобном отведении (по отношению к ушному электроду) и 5 – в других отведениях. Кроме того, быстрая активность, если она появляется симметрично в обоих полушариях и не отдельными вспышками, даже если она диффузно не распространена по коре больших полушарий головного мозга, не должна рассматриваться как отклонение от нормы.

Термины, используемые при расшифровке ЭЭГ

При диагностической оценке ЭЭГ учитывают частотный состав ЭЭГ, ее компоненты и характер организации (паттерн) биоэлектрической активности

Чтобы правильно описать и интерпретировать ЭЭГ, важно хорошо владеть специальной терминологией, принятой Международной федерацией клинической нейрофизиологии

Волна – одиночное колебание потенциала любой амплитуды и формы.

Схема определения амплитуды и периода отдельной волны

Амплитуда волны – величина колебания потенциала от пика до пика, измеряется в микровольтах и милливольтах.

Период (цикл) – длительность интервала между началом и концом одиночной волны или комплекса волн. Период отдельных волн ритма ЭЭГ обратно пропорционален частоте этого ритма.

Частота – число волн или комплексов волн в секунду.

Полоса частот – часть спектра синусоидальных колебаний электромагнитных излучений, лежащая в определенных пределах.

Диапазон частот – участок частотного спектра изменчивости потенциалов головного мозга, ограниченный определенными частотными рамками. Современная классификация частот выделяет следующие диапазоны: δ-диапазон – 0,5-4 колебаний/с, θ-диапазон – 4,5-7 колебаний/с, α-диапазон – 8-12 колебаний/с, ß1-диапазон – 16-20 колебаний/с, ß2-диапазон – 20-35 колебаний/с, γ-диапазон – выше 35 колебаний/с.

Компонент – любая отдельная волна или комплекс волн, различаемых на ЭЭГ.

Комплекс (волновой комплекс) – активность, состоящая из двух или нескольких волн характерной формы, отличных от основного фона, и имеющая тенденцию сохранять свою структуру при повторении.

Ритм ЭЭГ – спонтанная электрическая активность мозга, состоящая из волн, имеющих относительно постоянный период).

На ЭЭГ взрослого человека выделяют α- и ß-ритмы, а также сенсо-моторный, или σ-ритм – 13-15 колебаний/с.

Патологическими для взрослого бодрствующего человека являются δ- и θ-ритмы.

Примеры электроэнцефалографических ритмов различных частотных диапазонов

Индекс – относительный показатель выраженности какой-либо активности ЭЭГ. Индекс α (θ, δ и т.д.) – время (в %), в течение которого на каком-либо отрезке кривой выражена данная активность. Интегральный индекс, характеризующий структуру ЭЭГ в целом, отношение интенсивности быстрых (α + ß) и медленных (δ- и θ-) ритмов.

Визуальный анализ ЭЭГ включает описание главных, наиболее выраженных компонентов α-, ß-, θ- и δ-ритмов по степени выраженности, частоте, амплитуде (очень низкая – до 10 мкВ, низкая – до 20 мкВ, средняя – 40-50 мкВ, высокая до 70-80 мкВ, очень высокая – выше 80 мкВ) и по зональным различиям.

Кроме того, отмечают локальные патологические знаки, наличие пароксизмальной и эпилептической активности, описывают отдельные типы биоэлектрических потенциалов и их характер.

Footnotes

  1. Зенков Л.Р. Электроэнцефалография. В кн.: Зенков Л.Р., Ронкин М.А. Функциональная диагностика нервных болезней. 2-е издание. М.: Медицина. 1991, с. 7-146.
  2. Friedlander W. J. Equivocation in EEG Reporting: the clinicians responce. Clin, electroencephalogr., 1979, v. 10, p. 219—221.
  3. Maurer К. et а!., 1989; GiannitrapaniD. etal., 1991; IznakA.F. etal., 1992
  4. Nagata К., 1990
  5. Болдырева Г.И., 1994
  6. Зимкина A.M., Домонтович Е.Н., 1966
  7. Maurer К. etal., 1989
  8. MoultonR. etal., 1988
  9. Русинов B.C., Гриндель О.М., 1987
  10. Монахов К.К. и др., 1983; Стрелец В.Б., 1990
  11. Карлов В.А., 1990; Сараджишвили П.М., Геладзе Г.Ш., 1977; PenfieldW., JasperH.H., 1954

Как проводится исследование

В зависимости от показаний, который оценил Ваш лечащий врач невролог-эпилептолог, определяются необходимая продолжительность исследования, функциональное состояние пациента во время проведения ЭЭГ (пассивное бодрствование, активное бодрствование, дневной сон, ночной сон) и объем функциональных (нагрузочных или провоцирующих) диагностических проб.

Пациента размещают в затемненной комнате на специальном функциональном кресле или кровати (диване), рядом с которым на штативе расположена электродная установка (аналогово-цифровой преобразователь – АЦП).

На голову пациента одевается специальная электродная шапочка, которая может быть в виде шлема из тонкой ткани либо в виде сетки из мягких резиновых жгутов, под которые врач-нейрофизиолог в определенном порядке вручную располагает электроды. В последнем случае к каждому электроду присоединяют по одному изолированному проводу, подключенному к АЦП, преобразовывающему аналоговые сигналы (колебание сопротивления под электродами) в цифровые и передающему их по кабелю к компьютерному электроэнцефалографу. Подключение происходит через усилитель, поскольку биотоки головного мозга настолько малы, что иначе зарегистрировать их было бы просто невозможно. Именно из-за слабости токов, протекающих в электродах и проводах, методика ЭЭГ является совершенно безопасной и безболезненной для пациента.

Электроды перед наложением смачивают физиологическим раствором хлорида натрия или гелем на водной основе, содержащим хлорид натрия (такие электродные гели абсолютно безвредны для организма пациента, легко смываются водой или стираются одноразовыми тканевыми салфетками). Использование физиологического раствора хлорида натрия или электродного геля необходимо для того, чтобы между электродами и кожей головы не было воздушной прослойки, затрудняющей регистрацию биоэлектрической активности головного мозга.

Участки кожи головы, куда предполагается накладывать электроды, протирают 40-45% спиртовым раствором (чтобы растворить кожный жир, затрудняющий проведение слабых электрических импульсов головного мозга). Накожные электроды при обследовании детей старше 10 лет накладываются по международной системе «10%-20%», а при обследовании детей по системе Юнга.

На уши пациента с помощью мягких клипс устанавливают ушные (неактивные) электроды, которые также смачивают в физиологическом растворе или электродным гелем на водной основе.

Исследование ЭЭГ в амбулаторно-поликлинических условиях обычно проводится в положении обследуемого полулёжа или лёжа (для максимального расслабления пациента и уменьшения артефактов мышечного напряжения) в состоянии пассивного бодрствования (при минимизации внешних звуковых и световых раздражителей). Пациента просят постараться расслабиться и закрыть глаза.

 При проведении длительного амбулаторного мониторинга ЭЭГ или видео-ЭЭГ-мониторинга в условиях специализированных противоэпилептических центрах исследуется активность головного мозга в различных состояниях – активном и пассивном бодрствовании, а также во время дневного или ночного сна.

В последние годы также с успехом используются современные информационные (компьютерные) технологии, например, с расположением записывающего устройства на теле пациента с помощью специальных эластичных ремешков, не стесняющих дыхание и движения обследуемого. Последний метод удобен при проведении длительного (дневного, ночного, суточного) амбулаторного мониторинга ЭЭГ, особенно у детей, в домашних условиях.

ЭЭГ – безопасный для здоровья и безболезненный метод исследования, который можно проводить в любом возрасте (от периода новорожденности до глубокой старости).

Области применения ЭЭГ

Электроэнцефалограмма используется:

  1. выявления эпилептиформных или эпилептических припадков;
  2. диагностики нарушений сна различной этиологии;
  3. выявления морфофункциональных изменений в мозге (опухоли головного мозга или нарушений кровообращения);
  4. выявления заболеваний ЦНС неясной этиологии (энцефалит, повышенное внутричерепное давление и атрофия мозга);
  5. констатации смерти мозга.

Электроэнцефалография является простым инструментом диагностики эпилепсии. Однако незаметная ЭЭГ не исключает эпилепсии, энцефалита или органических заболеваний. Локализованные изменения мозга в настоящее время диагностируются с использованием современных методов визуализации.

Если мозговые волны не могут быть измерены, это называется нулевой ЭЭГ. Нулевая активность означает тотальную смерть мозга. Смерть головного мозга является предпосылкой для удаления органов у мертвого человека и их пересадки.

Электроэнцефалограф утратил свою значимость, когда были разработаны современные методы визуализации, такие как компьютерная или магнитно-резонансная томографии. Данные исследования обычно лучше отражают повреждение мозга. Поскольку электроэнцефалография может проводиться просто и без осложнений, а также особенно полезна для выявления эпилепсии, она по-прежнему используется в клинической практике. ЭЭГ также используется для выявления возрастных нарушений зрелости головного мозга и нарушений ритма сна.

Как расшифровывается и что можно увидеть?

Расшифровка показателей ЭЭГ головного мозга у детей занимает довольно много времени. Обычно результаты выдаются через несколько дней. Так как анализируются электрические показатели со всех отведений, оцениваются все пики и волны, их синхронность, симметричность.

На руки родителям выдают заключение, распечатка выбранных врачом фрагментов записи и, в специализированных центрах, диск с записью всего исследования. Иногда врач может дать рекомендации по дальнейшему обследованию.

Самостоятельно понять, как расшифровать ЭЭГ головного мозга у детей не получится даже при очень большом желании. Расшифровывать волны электрической активности может только специалист, особенно у детей, у которых даже норма имеет множество вариаций, в зависимости от возраста ребенка.

Принято выделять следующие основные ритмы электрической активности на ЭЭГ:

  • Альфа ритм (или предшественник альфа ритма у детей до 5-ти лет). Регистрируется в состоянии покоя, при котором ребенок сидит или лежит с закрытыми глазами и ничего не делает.
  • Бета ритм. Выявляется при максимальном сосредоточении внимания: быстрые волны свидетельствуют об активном бодрствовании.
  • Тета ритм. При нормальной картине ЭЭГ у здоровых детей 2-8 лет является одним из основных ритмов, представляет из себя волны, по амплитуде несколько превышающие альфа ритм. Появление таких показателей в более взрослом возрасте может свидетельствовать о задержке психического развития, может потребоваться консультация генетика.

Также при расшифровке ЭЭГ у детей оценивается синхронность электрических потенциалов в обоих полушариях. Нарушение синхронизации свидетельствует о наличии патологического очага. Он может быть представлен опухолью, эпилептическим очагом, сосудистой мальформацией и так далее.

Регистрация эпилептиформных паттернов является важной частью исследования. Доброкачественные эпилептиформные паттерны детства сейчас рассматриваются как вариант нормы при отсутствии эпилептических приступов и регресса в развитии ребенка

При множественном появлении разрядов на ЭЭГ необходимо оценивать клинику, возможно будет необходимо проконсультировать малыша у психолога и психиатра. Расшифровывать такие результаты и выставлять диагноз приходится с учетом дополнительных методов исследований.

Памятка по подготовке и проведению ЭЭГ сна

Подготовка к ЭЭГ сна:

1. Ребенка, особенно маленького, желательно подготовить к проведению ЭЭГ. Можно рассказать, что скоро он окажется в гостях, в комнате с детскими игрушками, и будет играть с тетей доктором в космонавта, летчика или водолаза. Инсценируйте подобную игру дома, не забудьте одеть шапочку на голову ребенка.

2. Для более плотного контакта датчиков с кожей головы желательно вымыть голову за день или в день исследования.

3. Поверхность головы должна быть чистая и гладкая: без косичек, хвостиков, заколок.

4. Исследование проводится во время физиологического сна, поэтому необходимо, чтобы ребенок хотел спать. Для этого желательно приурочить время исследования к физиологическому сну Вашего ребенка. Постарайтесь не заснуть в дороге, так как даже пятиминутная дремота помешает ему снова погрузиться в сон. Если ребенок не спит днем, разбудите его утром пораньше.

Проведение ЭЭГ сна

1. На голову ребенка одевается шлем (похожий на шапочку для плавания) со встроенными электродами. Затем, для контакта электродов с кожей, под каждый электрод, заливается небольшое количество ультразвукового геля.

2. Это можно сделать как в состоянии бодрствования, так и вовремя сна малыша. Чтобы процедура одевания шлема и процесс засыпания проходили спокойнее, можно покормить ребенка, взять его любимые игрушки, книжки, планшет.

3. Ребенок может находиться на руках у родителей или на кушетке. Подушка и плед в кабинете имеются, но вы можете принести с собой свои любимые вещи. Кушетка широкая, так что, при желании, можно заснуть вместе с ребенком.

4. Запись бодрствования и функциональные пробы (открывание и закрывание глаз, фотостимуляция и гипервентиляция) проводятся либо в начале, либо в конце исследования, то есть до или после сна.

5. По окончании исследования, происходит распечатка графиков биоэлектрической активности и формируется заключение.

ИМЕЮТСЯ ПРОТИВОПОКАЗАНИЯ, НЕОБХОДИМА КОНСУЛЬТАЦИЯ СПЕЦИАЛИСТА.

Для эффективной подготовки к исследованию рекомендуем получить специальную очную консультацию специалиста.

Запишитесь на исследование по телефону контакт-центра в Москве  +7 (495) 775 75 66 через форму on-line записи или в регистратуре клиники.

Международная система расположения электродов «10—20 %» при проведении ЭЭГ

➥ Основная статья: Система 10-20

Схема наложения электродов 10-20

Биоэлектрическая активность головного мозга может регистрироваться с любых точек на конвекситальной поверхности. Повторяемость результатов, их сравнимость с данными других исследований достигается только при применении всеми специалистами единой стандартной системы расположения электродов.

В 1958 г. Генри Джаспер предложил оригинальную схему размещения электродов. В основу «системы координат», предложенной Джаспером, положено строгое соотношение расстояний между электродами в «координатной сетке» на конвекситальной поверхности. Система «меридианов и параллелей» строится относительно линии «затылочный бугор — переносица» и интераурикулярного «экватора», проходящего через макушку. Исходя из выбранного соотношения расстояний между электродами, схема Джаспера имеет название «система 10—20 %». В настоящее время система размещения электродов «10—20 %» рекомендована Международной федерацией клинических нейрофизиологов (IFCN) как стандартная.

Буквенные символы обозначают основные области мозга и ориентиры на голове: О — occipitalis, Р — parietalis, С — centralis, F — frontalis, Т — temporalis, А — auricularis. Нечетные цифровые индексы соответствуют электродам над левым, а четные — над правым полушарием мозга. Электродам, расположенным по сагиттальной линии, присваивается индекс «z».

Точки расположения электродов в системе отведений «10—20 %» определяют следующим образом. Измеряют расстояние по сагиттальной линии от затылочного бугра (inion) до переносицы (nasion) и принимают его за 100 %. В 10 % этого расстояния от опорных точек (inion и nasion) устанавливают соответственно нижний лобный (Fpz) и затылочный (Oz) сагиттальные электроды. Остальные сагиттальные электроды (Fz, Cz и Pz) располагают между этими двумя на равных расстояниях, составляющих 20 % от расстояния inion-nasion. Вторая основная линия проходит между двумя слуховыми проходами через vertex (макушку). Нижние височные электроды (ТЗ и Т4) располагают соответственно в 10 % этого расстояния над слуховыми проходами, а остальные электроды этой линии (СЗ, Cz, С4) — на равных расстояниях, составляющих 20 % длины биаурикулярной линии. Через точки ТЗ, СЗ, С4, Т4 от inion к nasion проводят линии и по ним располагают остальные электроды. По средней сагиттальной линии (через Cz) располагают электроды Oz, Pz, Fz. По линиям, проходящим через СЗ и С4, располагают электроды 01, РЗ, F3, Fpl слева и 02, Р4, F4, Fp2 — справа. По нижним линиям, проходящим через электроды ТЗ и Т4, размещают электроды F7 и Т5, F8 и Тб. На мочки ушей помещают клипсы-электроды: А1 — на левое ухо и А2 — на правое.

Преимуществом схемы «10—20 %» является большое количество электродов, что позволяет получить детальную картину распределения потенциалов по конвекситальной поверхности и выполнять процедуры картирования.

Американским нейрофизиологическим сообществом в начале 1990-х гг. (1991) была предложена система отведений «10—10». Дополнительные электроды в этой системе устанавливаются на расстоянии, равном половине расстояния между электродами в системе «10—20». Данная система, как и системы с еще большим количеством электродов (до 64—128), представляют попытку повышения «разрешающей способности ЭЭГ». Под «разрешающей способностью ЭЭГ» условно можно принять возможность определить два источника биоэлектрической активности головного мозга как самостоятельные независимые источники.

Как правильно – ЭНМГ или ЭМГ?

И в завершении немного о путанице в терминологии. Часто встречаются два названия исследования: «электронейромиография» (т.е. ЭНМГ) и «электромиография» (ЭМГ). Как говорилось выше, есть стимуляционная электромиография и игольчатая. Именно игольчатую иногда называют «ЭМГ» или «электромиография», а стимуляционную – «электронейромиография» или «ЭНМГ». В конечном итоге, как таковой разницы нет, потому что именно сочетание стимуляционного и игольчатого методов позволяет всесторонне изучить патологический процесс. К тому же, если доктор направляет Вас на обследование, то правильнее было бы с его стороны либо указать, какие именно нервы и мышцы он хочет исследовать и с какой целью, либо (в том случае если врач, проводящий ЭНМГ – невролог) оставить определение необходимого объема обследования на усмотрение диагноста.

В двух частях этой статьи мы коротко ознакомились с функциональной диагностикой центральной и периферической нервной системы. Точнее, всего с двумя методами – вызванными потенциалами и электронейромиографией. Но, конечно, таких методов много больше – это и известная многим электроэнцефалография (ЭЭГ), и различные виды длительного мониторирования ЭЭГ, полисомнография, кардиореспираторный скрининг и многие другие. О них мы поговорим в другой раз.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector