Как научиться быстро считать в уме

Содержание:

Таблица умножения на 3

Объясните умножение на 3 в том же порядке, но тут придется посидеть подольше, ведь умножения на число 3 вызывает сложности. Воспользуйтесь игровой формой, либо найдите песни и стихи. Лучший пример – воспроизвести таблицу умножения на 3 с помощью бытовых предметов, которые окружают ребенка. Это вызовет ассоциации, и ученик будет быстрее воспринимать информацию. Используя ручки и карандаши, которые малыш всегда берет с собой в школу, в случае контрольной, метод ассоциаций придет на выручку.  Вспомнив, что 3 карандаша + 3 карандаша + 3 карандаша, он получил цифру 9. Визуальное запоминание информации остается одним из самых эффективных методов учебы.

Таблица со стихами придет на помощь, если другие способы не сработали.

Решение важнее ответа

«Одна из самых первых и самых сложных задач, с которой я сталкиваюсь как университетский преподаватель, — это заставить студентов (да, именно заставить!) правильно записывать математику. Их первые домашние задания — это обычно нечитабельная коллекция цифр и символов… „Зачем писать полные предложения? — удивляется первокурсник. — Я же нашел правильный ответ, вот, смотрите, внизу страницы!“»

Автор этих строк — профессор математики Кевин Хьюстон из Лидского университета в Англии и автор книги «Думать как математик» (How to Think Like a Mathematician). Под его словами подпишется подавляющее большинство университетских преподавателей.

В школе на уроках математики мы привыкли, что самое главное — это правильный ответ и что учитель из обрывков формул поймет, как мы до него добрались. Но на самом деле в математике, по словам того же Хьюстона, главное — «получить ответ с помощью обоснованных аргументов и убедить других, что ваши аргументы обоснованы».

В этом еще один колоссальный разрыв между школьной математикой и математикой на самом деле. Главное не ответ, главное — решение. Математические статьи в основном состоят из слов, а не из формул. И даже формулы, если приглядеться внимательно, это просто часть предложения! Мы могли бы это все записать словами, но формулы просто короче. Как пишет Джейсон Уилкс в книге «Математика в огне», формулы — это всего-навсего сокращения.

Муж Нелли тоже университетский преподаватель математики. И, конечно, он тоже тратит много сил и времени, чтобы убедить студентов записывать решения подробно, с помощью полных предложений. Убедить бывших школьников, что решение важнее ответа, очень непросто! На рисунке его любимый пример, который он приводит на своих занятиях.

Ответ совершенно правильный, можете сами проверить. Но если рассуждать так, то можно получить и много всякой ерунды, например, что ¹²/₂₄ тоже равно ¼, или что ¹³/₃₉ равно ⅑.

На всякий случай приведем правильное решение. Можете в нем не разбираться, мы просто хотим показать, что оно выглядит совершенно по-другому.

Как видите, правильный ответ мало что значит. Получилась одна четвертая — ну и что. Это может посчитать любой калькулятор

Для математиков самое важное — это подход. Если нам нужно упростить дробь, то нельзя взять и зачеркнуть шестерку, а нужно искать общие множители!

Главное не ответ, а решение. И мы уже видели, что даже такую простую задачку, как 18 × 5, можно решить самыми разными способами. Поэтому математика — это не набор стандартных приемов, а творческий процесс.

В математике есть понятие вкуса: кому-то больше нравится одно решение, кому-то другое. У математиков могут быть свои любимые способы доказательств, теоремы, алгоритмы. И уж конечно, в математике есть мода и даже устаревшие задачи и устаревшие методы решения!

Стихия скобок

Тему раскрытия скобок можно продолжать бесконечно. Если бы мы не ограничились (a + b)², а добавили побольше скобок, например, (a + b)³ = (a + b) (a + b) (a + b), то очень быстро столкнулись бы с комбинаторикой, биномом Ньютона, треугольником Паскаля и теорией вероятностей. И предела этому нет…

Наш гуманитарий Алла, находясь под впечатлением от скобок в математике, стояла на черноморском берегу и смотрела на отплывающие от берега судна. Она заметила, что паруса издалека выглядят как скобки, и можно представить, что это числа ходят под парусами: те, что побольше, отплывают на шхунах, поменьше — на утлых лодочках. С берегом расставаться всегда немного грустно. Вот на какие стихи Аллу вдохновила математика:

Мне жалко цифры разрывать,

Они, как лодки от причала,

Не отрываются сначала,

На помощь нужно ветер звать.

И гнутся скобки — столько ветра,

А на борту одно весло.

От круглых чисел словно ветка

Откалывается колесо.

В рубрике «Открытое чтение» мы публикуем отрывки из книг в том виде, в котором их предоставляют издатели. Незначительные сокращения обозначены многоточием в квадратных скобках. Мнение автора может не совпадать с мнением редакции.

Система охлаждения ваз 2110

Игры с умножением

В Интернете можно найти много интересных игр и примеров с умножением чисел. Вот один забавный.

Задание: Возьмите калькулятор, умножьте 481 на 21 и на ваш возраст. Понимаете, как получился результат? Для самых любознательных вопрос посложнее: всегда ли это работает? Удачи!

Конечно, числа 481 и 21 выбраны не случайно. Если их перемножить, то получится 10101. Допустим вам 34 года. Тогда 10101 × 34 = 343434. Это работает, если вам от 10 до 99. Кстати, этот трюк напрямую связан с раскрытием скобок.

Смотрите, мы можем разорвать 10101 на части:

10101 = 10000 + 100 + 1. Перемножим по частям:

10000 × 34 = 340000

100 × 34 = 3400

1 × 34 = 34.

Сложим и получим 343434.

Как быстро и легко выучить таблицу умножения с ребёнком?

Рассмотрим несколько, проверенных личным опытом, практических советов, которые, при применении на практике, дают очень хороший результат.

Совет в запоминании №1

Большую роль в усвоении таблицы умножения играет понимание смысла умножения. Объясните ребёнку смысл действия умножения и научите этим пользоваться при вычислениях.

Умножение – это сумма одинаковых слагаемых.

8 x 3 – это значит, что число 8 мы должны взять 3 раза: 8 х 3 = 8 + 8 + 8

Понимая смысл множителя, ребёнок сможет найти результат даже в ситуации, когда он забыл какой-то случай из таблицы.

Например, забыв результат умножения числа 4 на 8, можно заменить умножение сложением и найти произведение: 4 х 8 = 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 = 32.

Важно знать переместительное свойство умножения (от перестановки множителей произведение не меняется), тогда результат можно найти ещё быстрее: 4 х 8 = 8 х 4 = 8 + 8 + 8 + 8 = 32

Умножать можно с помощью рук Умножение на 9

Для этого положите руки ладонями вверх, пальцы разогните. Мысленно пронумеруйте пальцы слева направо от 1 до 10. Загните тот палец, на какое число нужно умножить 9. Например, нужно 9х3. Загибаете 3 палец. Все пальцы слева (их 2 — это десятки), пальцы справа (их 7) — единицы. Соединяем десятки и единицы, получаем — 27.

Вычисление произведения любых однозначных чисел больше, чем 5

Способ 1

Пронумеруйте мысленно пальцы на обеих руках. Мизинец — 6, безымянный — 7, средний — 8, указательный — 9, большой — 10 (на то он и БОЛЬШОЙ, чтобы выражать самое БОЛЬШОЕ число).

Допустим, вы хотите узнать, сколько будет 8 х 7. Соедините вместе средний палец левой руки (8) с безымянным правой (7), как показано на рисунке. А теперь считайте. Два соединённых пальца плюс те, что под ними, указывают на количество десятков в произведении. В данном случае — 5. Число пальцев, оказавшихся над одним из сомкнутых пальцев, умножьте другим сомкнутым пальцем. В нашем случае 2 х 3 = 6. Это — число единиц в искомом произведении. Десятки складываем с единицами, и ответ готов — 56.

Способ 2

Например, нужно выяснить сколько будет при счете 7х7. Загнём на левой руке столько пальцев, на сколько первый множитель больше 5, а на правой руке столько пальцев, на сколько второй множитель больше 5.

В данном случае будет загнуто по 2 пальца. Если сложить количество загнутых пальцев и перемножить количество не загнутых, то получится соответственно число десятков и единиц искомого произведения, т.е. 49. Если этим способом вычислять произведение 6х7, то получится 3 десятка и 12 единиц, т.е. 30+12=42

Проверьте и убедитесь, что эти способы действительно работают.

5+ игр для быстрого запоминания таблицы умножения

Чтобы быстро выучить таблицу умножения, ребенку в возрасте 8-10 лет — а именно столько ему во 2-4 классе, когда в программе появляется умножение — стоит подобрать игру по вкусу. Так процесс пойдет намного эффективнее, чем в случае простой зубрежки.

Вот перечень наиболее распространенных и интересных вариантов игрового обучения:

Карточки

Их можно распечатать самостоятельно, а можно приобрести практически в любом детском магазине — настолько эта игра известна и популярна. Набор включает все комбинации множителей из таблицы умножения с ответами на оборотной стороне.

Чтобы быстро выучить их, играть предлагается следующим образом:

  1. Игрок тянет пример
  2. В случае правильного ответа карточка отправляется в «отбой»
  3. В случае неправильного — возвращается в колоду

Повторять перечисленные шаги следует до тех пор, пока в основной колоде не останется карт. За счет того, что сложные примеры возвращаются в стопку и встречаются снова и снова, они запоминаются лучше и прочнее.

Чтобы выучить всю таблицу умножения максимально быстро, попробуйте устроить игру на время. Ребята, занимающиеся во 2-3 классе, наверняка будут в восторге от такой викторины.

Вам на помощь придут развивающие компьютерные игры

Стихотворные примеры

Разучите с ребенком самые простые рифмующиеся примеры из таблицы умножения: пятью пять, шестью шесть и т.д. А можно сразу взять на вооружение стихотворный разбор всей таблицы — например, книгу Андрея Усачева «Таблица умножения в стихах».

Яркие иллюстрации и интересные короткие стишки превратят зубрежку в увлекательную игру. Чтобы быстро выучить таблицу во 2 или 3 классе, такой способ подойдет как нельзя лучше.

Счет на пальцах

Любознательным детям втянуться в обучение наверняка поможет один наглядный прием-хитрость умножения на девять.

Рассмотрим его на примере пятью девять:

  1. Смотрим на собственные ладошки
  2. Отсчитываем пятый пальчик слева (как показатель множителя 5)
  3. Считаем количество пальцев слева от «множителя» — это десятки (в данном примере их будет четыре)
  4. Считаем количество пальчиков справа от пятого — это единицы (в данном примере их пять)

Итогом будет число 45 — ответ на пример из таблицы умножения. Такой подход работает для любых умножений на девять — попробуйте сами.

Ни в коем случае не критикуйте ребенка за неудачи

Использование игрушек или наглядных примеров

Чтобы быстро выучить принципы умножения на 2 и 3 по таблице умножения, можно использовать в качестве подспорья в игре практически что угодно: игрушки, предметы на улице, людей, животных и т.д.

Выберите такой пример, который более знаком и привычен вашему ребенку. Выстраивайте в ряд по два и три игрушки и считайте их. Потом объясните ребенку принцип сокращения процесса подсчета с помощью умножения.

Мобильные или онлайн-игры на изучение таблицы умножения

В сети существует бесчисленное количество разных игр, направленных на то, чтобы быстро выучить таблицу умножения, играя онлайн. Подберите вместе с ребенком увлекательную и яркую игру и предоставьте ему развлекаться — а после проверьте успехи.

Если вас заботит неконтролируемое пребывание ребенка в интернете, выберите игру, которую можно бесплатно скачать, и используйте ее, чтобы быстро выучить таблицу умножения.

Есть много способов привлечь внимание ребенка

Морской бой

Этот игровой способ отлично подходит для закрепления уже имеющихся знаний. Запишите поля «морского боя» цифрами с обеих сторон и установите, что для атаки сектора нужно назвать результат умножения соответствующих чисел.

Такая несложная и увлекательная игра отлично тренирует память и скорость умножения. Конечно, чтобы быстро выучить таблицу умножения во 2 классе, игра нужна не всегда.

Некоторые детки, особенно если им повезло со школьными преподавателями и вообще отношением к учебе, с интересом будут постигать принципы математических примеров и без игр.

В этом случае используйте системный пошаговый подход к обучению:

  1. Объясните принцип умножения на единицу и десятку
  2. Освойте удвоение
  3. Разберите принцип неизменности результата от перестановки множителей
  4. Выучите квадраты чисел
  5. Последовательно переходите к изучению умножения на 3, 4, 5 и т.д.

Настройтесь на позитивный лад, и результат не заставит себя долго ждать

Даже в такой подход можно добавить игровой элемент, помечая разными цветами уже заученные области. Финальной целью игры будет очищение поля.

Запоминание таблицы умножения — одна из первых ступеней в обучении ребенка математике, одна из важнейших основ. 

Мы уверены, что вы выберете оптимальный подход и успешно изучите все тонкости умножения чисел. Больше наглядного материала по игровому изучению таблицы вы сможете найти в этом видео:

Вы уже раскрыли скобки!

Посмотрим снова на пример 18 × 5. Допустим, вы подсчитали так:

18 × 5 = 10 × 5 + 8 × 5 = 50 + 40 = 90.

Когда мы умножаем в уме, мы очень легко и естественно разбиваем числа на части и умножаем по отдельности. Это и есть раскрытие скобок. Скобки нам нужны, просто чтобы записать то, что мы делаем в уме:

(10 + 8) × 5 = 10 × 5 + 8 × 5 = 50 + 40 = 90.

Математики называют раскрытие скобок великими и ужасными словами «распределительный закон».

Звучит умно, но терминология не так важна. В книге «Математика в огне» Уилкс называет раскрытие скобок «естественным законом о разрывании вещей». Мы «разрываем» 18 на две части — 10 и 8, умножаем каждую из них на 5, а потом складываем.

Как научиться быстро считать в уме ребенку

Все навыки лучше всего развиваются и закрепляются в детстве. Учиться считать, также, как и читать, можно с 1.5-2 лет. Особенности этого возраста заключаются в том, что у ребенка сначала накопятся пассивные знания – он будет понимать, знать, но из-за малого словарного запаса, будет мало разговаривать. До пяти лет малыш может обучиться в уме производить простые действия – вычитания и сложения в пределах двадцати. Если в два – три с половиной годика вы будете использовать наглядные методы в обучении, то позже малыш сможет оперировать только цифрами, без подкрепления наглядным материалом.

Если вы хотите, чтобы у вашего ребенка было больше шансов, что процесс оперирования крупными значениями и математическими действиями будет даваться легче и пойдет быстрее, тогда нужно как можно раньше научить его считать.

Обучать детей до четырех лет лучше с наглядными материалами. Считать можно все, что хотите. Пожарные машины, которые спешат на пожар, мотоциклисты, которые с грохотом пролетают мимо вас, кошки, которые греются на солнышке, стайки птиц – все, что вокруг вас можно посчитать

С навыками счета одновременно будут развиваться наблюдательность и внимание. Постепенно увеличивайте нагрузку

Утром вы видели 2 кошек, а когда возвращались домой, еще 3. Спросите у ребенка: «Заметил ли он, что сегодня так много кошек! Сколько он заметил?». Похвалите его за точность и наблюдательность, ведь эти качества пригодятся ему в жизни.

В начальной школе малышу необходимо быстро и свободно производить любые вычисления в пределах, определенных школьной программой. Чтобы научиться считать быстро, необходимы постоянные тренировки. Поэтому задачей родителей является побуждение малыша к счету и делать так, чтобы это происходило интересно. Чем чаще ваш ребенок будет тренироваться, тем легче ему будет делать точные и быстрые вычисления в уме.

Умножение чисел в уме

Умножение – это многократное повторение числа. Если нужно умножить 8 на 4, это значит, что число 8 нужно повторить 4 раза.

8*4=8+8+8+8=32

Так как все сложные задачи сводятся к более простым, нужно уметь умножать все однозначные числа. Для этого существует отличный инструмент – таблица умножения. Если вы не знаете эту таблицу на зубок, то мы настоятельно рекомендуем первым делом выучить ее и только потом приниматься за практику устного счета. К тому же учить там, по сути, нечего.

Таблица умножения

Умножение многозначных чисел на однозначные

Сначала потренируйтесь в умножении многозначных чисел на однозначные. Пусть нужно умножить 528 на 6. Разбиваем число 528 на разряды и идем от старшего к младшему. Сначала умножаем, а потом складываем результаты.

528=500+20+8

528*6=500*6+20*6+8*6=3000+120+48=3168

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Умножение двузначных чисел

Здесь тоже нет ничего сложного, только нагрузка на краткосрочную память немного больше.

Перемножим 28 и 32. Для этого сведем всю операцию к умножению на однозначные числа. Представим 32 как 30+2

28*32=28*30+28*2=20*30+8*30+20*2+8*2=600+240+40+16=896

Еще один пример. Умножим 79 на 57. Это значит, что на нужно взять число «79» 57 раз. Разобьем всю операцию на этапы. Сначала умножим 79 на 50, а потом – 79 на 7.

  • 79*50=(70+9)*50=3500+450=3950
  • 79*7=(70+9)*7=490+63=553
  • 3950+553=4503

Умножение на 11

Вот хитрый прием быстрого устного счета, который поможет умножить любое двузначное число на 11 с феноменальной скоростью.

Чтобы умножить двузначное число на 11, две цифры числа складываем друг с другом, и получившуюся сумму вписываем между цифрами исходного числа. Получившееся в итоге трехзначное число — результат умножения исходного числа на 11.

Проверим и умножим 54 на 11.

  • 5+4=9
  • 54*11=594

Возьмите любое двузначное число, умножьте его на 11 и убедитесь сами — эта хитрость работает!

Возведение в квадрат

С помощью другого интересного приема устного счета можно легко и быстро возводить двузначные числа в квадрат. Особенно просто это делать с числами, которые заканчиваются на 5.

Результат начинается с произведения первой цифры числа на следующую за ней по иерархии. То есть, если эту цифру обозначить через n, то следующей за ней по иерархии цифрой будет n+1. Результат заканчивается на квадрат последней цифры, то есть квадрат 5.

Проверим! Возведем в квадрат число 75.

  • 7*8=56
  • 5*5=25
  • 75*75=5625

Раньше все считали без калькуляторов

Как выбрать эффективную методику

Сегодня многие учебные заведения предлагают пройти курсы ментальной арифметики. Но детское образование – это очень сложный и многогранный процесс, поэтому родители должны походить к нему внимательно, и выбирать такие занятия, которые точно принесут пользу.

Выбирая школу ментальной арифметики, обращайте внимание на то, чтобы обучение велось по проверенной методике и учитывало возрастные особенности каждого ребенка. Нельзя, чтобы в одной группе обучались дети из начальной школы и старшеклассники, ведь в каждом возрасте своя скорость освоения, запоминания и закрепления материала

К тому же, маленьким детям лучше всего преподавать любой предмет в игровой форме. Так они не будут уставать учиться и смогут сохранять концентрацию в течение всего урока. Внедрение игры в образовательный процесс способствует повышению интереса ребенка к математике.

Очень важно, чтобы тренер успевал уделить внимание каждому ученику в процессе занятия, но это возможно только в небольших группах. Поэтому стоит отдавать предпочтение тем детским центрам, где педагог обучает не более десяти детей единовременно. Только тогда удастся заниматься с максимальной продуктивностью

Только тогда удастся заниматься с максимальной продуктивностью.

Если учебный план организован правильно, то ребенку удастся приобрести полезные навыки, благодаря которым математика станет для него интересным и любимым предметом. Все это положительно скажется на успеваемости в школе, ведь, когда учеба дается легко, заниматься намного веселее.

Все это делает обучение ментальной арифметике самым продуктивным способом освоения быстрого устного счета.Ребенку больше не придется прибегать к различным математическим хитростям, чтобы легко справляться с задачами и примерами. Ученик приобретает навыки, которые сохраняются на всю жизнь, а значит они пригодятся ему не только в учебе, но и в карьерной деятельности. Все это делает обучение данной технике отличным вкладом в будущее своего ребенка.

Сложение чисел в уме

Чтобы научиться складывать в уме большие числа, нужно уметь безошибочно складывать числа до 10. В конечном счете любая сложная задача сводится к выполнению нескольких тривиальных действий.

Чаще всего проблемы и ошибки возникают при сложении чисел с «переходом через 10». При сложении (да и при вычитании) удобно применять технику «опоры на десяток». Что это? Сначала мы мысленно спрашиваем себя, сколько одному из слагаемых не хватает до 10, а потом прибавляем к 10 оставшуюся до второго слагаемого разность.

Например, сложим числа 8 и 6. Чтобы из 8 получить 10, не хватает 2. Затем к 10 останется прибавить 4=6-2. В итоге получаем: 8+6=(8+2)+4=10+4=14

Основная хитрость со сложением больших чисел – разбить их на разрядные части, а потом сложить эти части между собой.

Пусть нам нужно сложить два числа: 356 и 728. Число 356 можно представить как 300+50+6.  Аналогично, 728 будет иметь вид 700+20+8. Теперь складываем:

356+728=(300+700)+(50+20)+(8+6)=1000+70+14=1084

Небольшие секреты, которые должен знать каждый

  1. Умножая на 1, числа не меняются – это одно из простейших правил в математике.
  2. При умножении на 5, числа будут заканчиваться на 0 или 5. 0 получает при умножении чётных чисел, а 5 ‒ нечётных.
  3. Умножая на 10, просто дописывайте нолик к числу, которое умножаете.
  4. Умножая на 4, необходимо каждый раз удваивать полученное число, например: 7 + 7= 14 и 14+14= 28.

Не оставляйте ребенка с проблемами, уделяйте время и старайтесь разобраться в сложностях, которые вызывает таблица умножения. И помните, выучить таблицу умножения за 5 минут невозможно, но можно развить в ребенке любовь к точным наукам, ведь первое знакомство малыша со сложной математикой начнётся именно с таблицы умножения.

Быстрая проверка делимости

Можно ли поровну поделить 408 конфет между 12 детьми? Ответить на этот вопрос легко и без помощи калькулятора, если вспомнить простые признаки делимости, которые нам преподавали ещё в школе.

  • Число делится на 2, если его последняя цифра делится на 2.
  • Число делится на 3, если сумма цифр, из которых состоит число, делится на 3. Например, возьмём число 501, представим его как 5 + 0 + 1 = 6. 6 делится на 3, а значит, и само число 501 делится на 3.
  • Число делится на 4, если число, образованное его последними двумя цифрами, делится на 4. Например, берём 2 340. Последние две цифры образуют число 40, которое делится на 4.
  • Число делится на 5, если его последняя цифра 0 или 5.
  • Число делится на 6, если оно делится на 2 и 3.
  • Число делится на 9, если сумма цифр, из которых состоит число, делится на 9. Например, возьмём число 6 390, представим его как 6 + 3 + 9 + 0 = 18. 18 делится на 9, а значит, и само число 6 390 делится на 9.
  • Число делится на 12, если оно делится на 3 и 4.

Правила

Царица наук – математика – позаботилась о школьниках и составила свод законов, алгоритмов и правил, усвоив которые и умело ими пользуясь, дети полюбят математику и умственный труд:

  • Переместительное свойство сложения: меняя местами компоненты действия, получаем тот же результат.
  • Сочетательное свойство сложения: при складывании трех и более чисел любые два (или больше) числовые значения можно заменить их суммой.
  • Сложение и вычитание с переходом через десяток: дополнить больший компонент
  • До круглых десятков, а потом прибавить остаток от другого компонента.
  • Вычитаем вначале отдельные единицы из числа до знака действия, а далее из круглых десятков вычитаем остаток вычитаемого.
  • Представив уменьшаемое в виде суммы десятков и единиц, уберем из десятков большего меньшее и прибавим к ответу единицы уменьшаемого.
  • При складывании и вычитании круглых десятков (их еще величают «круглые» числа) десятки можно считать так же, как единицы.
  • Сложение и вычитание десятков и единиц. Десятки удобнее прибавлять к десяткам, а единицы — к единицам.

Прибавление числа к сумме

Способы следующие:

  • Вычисляем ее значение, а затем прибавляем к ней данную величину.
  • Прибавляем его к первому слагаемому, а затем к результату прибавляем второе слагаемое.
  • Число прибавляем ко второму слагаемому, а затем к ответу прибавляем первое слагаемое.

Прибавление суммы к числу

Способы следующие:

  • Вычислим ее показание, а затем прибавим к числу.
  • К числу прибавим первое слагаемое, а затем к результату прибавим второе слагаемое.
  • К числу прибавим второе слагаемое, а затем к результату прибавим первое слагаемое.

Использование главных свойств умножения

Методики таковы:

  • Переместительное свойство умножения. Если поменять сомножители местами, их произведение не изменится.
  • Сочетательное свойство умножения. При перемножении трех и более чисел любые два (и больше) числа можно заменить их произведением.
  • Распределительное свойство умножения. Чтобы умножить сумму на число, надо умножить каждое ее составляющее на это число и полученные произведения сложить.

Умножение и деление чисел на 10 и 100

Способы:

  • Чтобы увеличить любое число в 10 раз, надо приписать к нему справа один ноль.
  • Чтобы это же сделать в 100 раз — надо приписать к нему справа два ноля.
  • Чтобы уменьшить число в 10 раз, надо отбросить справа один ноль, а чтобы разделить на 100 — два ноля.

Умножение суммы на число

Способы:

  • 1-й способ. Посчитаем сумму и умножим ее на данную величину.
  • 2-й способ. Перемножим число с каждым из слагаемых, и полученные ответы сложим.

Умножение числа на сумму

Способы:

  • 1-й способ. Найдем сумму и умножим число на то, что получим.
  • 2-й способ. Умножим число на каждое из слагаемых, и полученные произведения сложим.

Деление суммы на число

Способы:

  • 1-й способ. Вычислим сумму и разделим ее на число.
  • 2-й способ. Каждое из слагаемых разделим на число и полученные частные сложим.

Деление числа на произведение

Варианты:

  • 1-й способ. Разделим число на первый множитель, а затем полученный результат разделим на второй множитель.
  • 2-й способ. Разделим число на второй множитель, а затем полученный результат разделим на первый множитель.

Закономерности в таблице умножения

Если родители хотят понять, как легко и быстро выучить таблицу умножения со школьником, то должны сначала научить его следующим закономерностям:

  • При умножении любого числа на единицу всегда получается то же самое число.
  • Все произведения при умножении на пять оканчиваются нулем или пятеркой. Это хорошо видно в столбике и строке с умножением на данное число. Если множители – нечетные числа, то произведение оканчивается на пять. Если один множитель – четное число, то результат оканчивается на ноль.
  • Также существует закономерность при умножении на 10. В этом случае независимо от первого множителя результат всегда заканчивается нулем.
  • Если сравнивать результаты умножения на пять и десять, то можно заметить, что первые ровно на половину меньше. Это связано с тем, что один из множителей в 2 раза меньше другого.
  • Умножение на 4 – это то же самое, что двойное удвоение числа. То есть, если нужно умножить 6 на 4, то это равно 6+6=12 и 12+12=24.
  • Есть определенная закономерность при умножении на 9. Первое число произведения становится больше на единицу, а второе – уменьшается на один.

Важно регулярно и многократно повторять выученную табличку с ребенком. Сначала ее просят рассказать по порядку, а потом задают вопросы вперемешку, чтобы школьник мог вспомнить и подумать

Сначала дают больше времени на раздумья, постепенно сокращая его.

Быстрое вычисление почасовой ставки

Представьте, что вы проходите собеседования с двумя работодателями, которые не называют оклад в привычном формате «рублей в месяц», а говорят о годовых окладах и почасовой оплате. Как быстро посчитать, где платят больше? Там, где годовой оклад составляет 360 000 рублей, или там, где платят 200 рублей в час?

Для расчёта оплаты одного часа работы при озвучивании годового оклада необходимо отбросить от названной суммы три последних знака, после чего разделить получившееся число на 2.

360 000 превращается в 360 ÷ 2 = 180 рублей в час. При прочих равных условиях получается, что второе предложение лучше.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector